OPERATIONS MANUAL

ba76148e05 05/2017

IQ SENSORNET Fieldbus linking

LINKING THE IQ SENSORNET TO A FIELDBUS

a xylem brand

For the most recent version of the manual, please visit <u>www.ysi.com</u>.

Contact YSI 1725 Brannum Lane Yellow Springs, OH 45387 USA Tel: +1 937-767-7241 800-765-4974 Email: info@ysi.com Internet: www.ysi.com

Copyright © 2017 Xylem Inc.

IQ SENSORNET Fieldbus linking - Contents

1	Link 1.1 1.2	king the Interfac Linking 1.2.1 1.2.2	PIQ SENSORNET to a fieldbus Ces of the IQ SENSORNET The IQ SENSORNET Linking the IQ SENSORNET via the RS485 interface Linking the IQ SENSORNET via the Ethernet interface 6	5 5 5 9
2	Inst	alling t	he interface in the IQ SENSORNET	7
	2.1	Installi	ng the RS485 interface	7
	2.2	Mounti	ng the Phoenix connector	9
	2.3	Installi	ng the Ethernet interface 1	0
		2.3.1 2.3.2	Communication via Ethernet 1 Ethernet connection in case of indoor	1
			installation 1	1
		2.3.3	Ethernet connection in case of outdoor installation	
		231	(DIQ/S28X-E[F]) 1 Ethernet connection in case of outdoor installation	. T
		2.0.4	(MIQ/MC2, MIQ/MC3) 1	1
3	Con	figurin	g the IQ SENSORNET1	4
	3.1	Config 3.1.1 3.1.2	uring the IQ SENSORNET for Profibus 1 Setting the PROFIBUS address 1 GSD file	4
	3.2	Config 3.2.1	uring the IQ SENSORNET for Modbus RTU 1 Setting the Modbus interface parameters 1	6
	3.3	PROFI	BUS / Modbus RTU checklist 1	7
	3.4	Config 3.4.1	uring the IQ SENSORNET for Ethernet fieldbuses . 1 GSDML file for Profinet	8
	0 5	3.4.2	EDS file for Ethernet-IP	9
	3.5	Assign	Creating the assignment of sensor numbers 2	.9 20
		3.5.2	Changing the assignment of sensor numbers 2	20
		3.5.3	Creating the identical assignment of sensor	o مر
				:2
4	Con	nmunic	ation with fieldbuses2	23
	4.1	Profibu	us DP(V0), Profinet 2	24
		4.1.1	Profinet module (query format)	24
		4.1.2 1 1 2	Protibus modules (query formats)	'4 ≻∕
		4.1.3		.4

		4.1.4 4.1.5	Data of a module	. 25
	12	Profibu	PPV1	0
	1.2	4.2.1	Modules (query formats)	. 27
		4.2.2	Data querv	. 28
		4.2.3	Data block of the sensors	. 29
		4.2.4	Example	. 30
	4.3	EtherN	et/IP	. 32
		4.3.1	Modules (query formats)	. 32
		4.3.2	Configuration	. 32
		4.3.3	Data block of the sensors	. 32
		4.3.4	Example	. 34
	4.4	Profibu	s DP(V0) and EtherNet/IP	
		Query	of individual sensors	. 36
		4.4.1	Configuration	. 37
		4.4.2	Data block for sensor selection (output data of	
			the PLC)	. 38
		4.4.3	Data block of the sensors (input data of the	
			PLC)	. 38
		4.4.4		. 39
	4.5	Comm	unication with Modbus RTU, Modbus TCP	. 40
		4.5.1		. 40
		4.5.2	Query format	. 40
		4.5.3		. 41
		4.5.4		. 42
5	Enco	oded da	ata for fieldbus communication	. 45
5	Enc 5.1	o ded d a Data fo	ata for fieldbus communication	. 45 . 45
5	Enc 5.1 5.2	o ded d a Data fo Sensor	ata for fieldbus communication	. 45 . 45 . 47
5	Enco 5.1 5.2 5.3	oded da Data fo Sensor Measu	ata for fieldbus communication ormats of the sensor datablock status red value status	. 45 . 45 . 47 . 48
5	Ence 5.1 5.2 5.3 5.4	oded da Data fo Sensor Measur Signali	ata for fieldbus communication ormats of the sensor datablock status red value status no the sensor status and measured value status	. 45 . 45 . 47 . 48 in
5	Ence 5.1 5.2 5.3 5.4	oded da Data fo Sensor Measu Signalia	ata for fieldbus communication ormats of the sensor datablock status red value status ng the sensor status and measured value status SENSOBNET	. 45 . 45 . 47 . 48 in . 49
5	Ence 5.1 5.2 5.3 5.4	oded da Data fo Sensor Measur Signalin the IQ \$ 5.4.1	ata for fieldbus communication ormats of the sensor datablock orstatus red value status ing the sensor status and measured value status SENSORNET Display in the measured value display on the	. 45 . 45 . 47 . 48 in . 49
5	Ence 5.1 5.2 5.3 5.4	Data fo Data fo Sensor Measu Signalii the IQ S 5.4.1	ata for fieldbus communication ormats of the sensor datablock r status red value status ng the sensor status and measured value status SENSORNET Display in the measured value display on the terminal	• 45 • 45 • 47 • 48 in • 49 • 49
5	Ence 5.1 5.2 5.3 5.4	oded da Data fo Sensor Measur Signalin the IQ \$ 5.4.1 5.4.2	ata for fieldbus communication ormats of the sensor datablock orstatus red value status ing the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level	. 45 . 47 . 48 in . 49 . 49 . 49
5	Ence 5.1 5.2 5.3 5.4	oded da Data fo Sensor Measur Signalin the IQ S 5.4.1 5.4.2 Sensor	ata for fieldbus communication prmats of the sensor datablock red value status ng the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level . rmodel	. 45 . 47 . 48 in . 49 . 49 . 49 . 50
5	Ence 5.1 5.2 5.3 5.4 5.5 5.6	oded da Data fo Sensor Measur Signalin the IQ S 5.4.1 5.4.2 Sensor Status	ata for fieldbus communication prmats of the sensor datablock r status red value status ng the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level . model	. 45 . 47 . 48 in . 49 . 49 . 49 . 50 . 52
5	Ence 5.1 5.2 5.3 5.4 5.5 5.6 5.7	oded da Data fo Sensor Measu Signalii the IQ 5.4.1 5.4.2 Sensor Status Measu	ata for fieldbus communication ormats of the sensor datablock orstatus red value status ing the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level info of sensors	. 45 . 45 . 47 . 48 in . 49 . 49 . 49 . 49 . 50 . 52 . 54
5	Ence 5.1 5.2 5.3 5.4 5.5 5.6 5.7	oded da Data fo Sensor Measur Signalin the IQ S 5.4.1 5.4.2 Sensor Status Measur	ata for fieldbus communication prmats of the sensor datablock red value status ng the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level . model info of sensors ring mode	. 45 . 45 . 47 . 48 in . 49 . 49 . 50 . 52 . 54
5	Enco 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Wha	oded da Data fo Sensor Measur Signalin the IQ S 5.4.1 5.4.2 Sensor Status Measur	ata for fieldbus communication ormats of the sensor datablock orstatus red value status ing the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level info of sensors info of sensors	. 45 . 45 . 47 . 48 in . 49 . 49 . 49 . 50 . 52 . 54 . 54
5	Ence 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Wha 6.1	oded da Data fo Sensor Measur Signalin the IQ S 5.4.1 5.4.2 Sensor Status Measur t to do	ata for fieldbus communication ormats of the sensor datablock orstatus red value status ing the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level info of sensors ring mode	. 45 . 45 . 47 . 48 in . 49 . 49 . 50 . 52 . 54 . 56
5	Enco 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Wha 6.1 6.2	oded da Data fo Sensor Measur Signalin the IQ S 5.4.1 5.4.2 Sensor Status Measur t to do PROFI	ata for fieldbus communication ormats of the sensor datablock orstatus red value status ing the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level info of sensors ring mode if BUS a RTU	.45 .45 .47 .48 in .49 .49 .50 .52 .52 .54
5	Ence 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Wha 6.1 6.2 6.2	oded da Data fo Sensor Measur Signalin the IQ S 5.4.1 5.4.2 Sensor Status Measur t to do PROFI Modbus	ata for fieldbus communication ormats of the sensor datablock orstatus red value status ing the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level info of sensors ring mode is RTU	.45 .45 .47 .48 in .49 .49 .50 .50 .52 .54 .56 .56
5	Ence 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Wha 6.1 6.2 6.3	oded da Data fo Sensor Measur Signalin the IQ S 5.4.1 5.4.2 Sensor Status Measur t to do PROFI Modbus Etherne	ata for fieldbus communication ormats of the sensor datablock orstatus red value status ing the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level info of sensors ring mode if BUS s RTU et fieldbuses	.45 .45 .47 .48 in .49 .50 .52 .52 .54 .56 .55 .57 .58
5	Ence 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Wha 6.1 6.2 6.3 Con	oded da Data fo Sensor Measur Signalin the IQ S 5.4.1 5.4.2 Sensor Status Measur t to do PROFI Modbus Etherne	ata for fieldbus communication ormats of the sensor datablock status red value status ng the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level rmodel info of sensors strug strug strug strug buss strug strug	.45 .45 .47 .48 in .49 .49 .50 .52 .54 .56 .56 .57 .58
5 6 7	Ence 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Wha 6.1 6.2 6.3 Con 7 1	oded da Data fo Sensor Measur Signalin the IQ S 5.4.1 5.4.2 Sensor Status Measur t to do PROFI Modbus Etherno	ata for fieldbus communication ormats of the sensor datablock status red value status ng the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level model info of sensors ring mode s RTU s RTU at fieldbuses formation	.45 .45 .47 .48 in .49 .50 .52 .52 .54 .56 .56 .57 .58
5 6 7	Enco 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Wha 6.1 6.2 6.3 Con 7.1 7.2	oded da Data fo Sensor Measur Signalin the IQ S 5.4.1 5.4.2 Sensor Status Measur t to do PROFI Modbus Etherno tact Inf	ata for fieldbus communication ormats of the sensor datablock orstatus red value status ng the sensor status and measured value status SENSORNET Display in the measured value display on the terminal Measured value transmitted on fieldbus level model info of sensors ring mode s RTU et fieldbuses ormation ng & Technical Support	.45 .45 .47 .48 in .49 .49 .50 .52 .52 .55 .55 .55 .57 .58

1 Linking the IQ SENSORNET to a fieldbus

1.1 Interfaces of the IQ SENSORNET

The IQ SENSORNET system provides interfaces for the following networks:

Fieldbus	Interface type	IQ SENSORNET compone	ents with interfaces
Modbus RTU	RS485	YY-MOD	YY = DIQ/S 28X,
Profibus		YY-PR	DIQ/S 182, MIQ/MC2
Modbus TCP	Ethernet	DIQ/S 28X-EF	ZZ = PR, MOD
Ethernet/IP		MIQ/MC3(-ZZ) MIQ/MC2(-ZZ)	
Profinet	Ethernet	DIQ/S 28X-EF MIQ/MC3(-ZZ)	

1.2 Linking the IQ SENSORNET

1.2.1 Linking the IQ SENSORNET via the RS485 interface

Steps		Profibus	Modbus
1	Establish the physical connection	sectio	n 2.1
2	Configure the interface of the IQ SENSORNET	section 3.1	section 3.2
3	Program the queries and access authorization *	GSD file section 3.1.2 section 4.1 section 4.2 section 4.4	section 4.5
4	Interpret the data of the IQ SENSORNET	sectio	n 5 ff

 * Configure the order of the sensors in the IQ SENSORNET (see section 3.5)

Steps		Ethernet IP	Profinet	Modbus TCP
1	Establish the physical connection	section 2.3		
2	Configure the interface of the IQ SENSORNET		section 3.4	
3	Program the queries and access	section 4.1		section 4.5
	authorization ^	EDS file section 3.4.2	GSDML file section 3.4.1	
4	Interpret the data of the IQ SENSORNET		section 5 ff	·
	* Configure the ord	ler of the sensors	in the IO SENSOR	NET (see section

1.2.2 Linking the IQ SENSORNET via the Ethernet interface

* Configure the order of the sensors in the IQ SENSORNET (see section 3.5)

2 Installing the interface in the IQ SENSORNET

2.1 Installing the RS485 interface

Profibus and Modbus use the same interface (RS485) for data exchange.

We especially recommend the "Aufbaurichtlinie PROFIBUS/FMS", published by the PROFIBUS user organization PNO, (PNO order number 2.111) with many practical tips for installation that also apply to Modbus systems

(http://www.profibus.com/download/installation-guide/).

Further instructions for the installation and operation of a Modbus network are available on the Internet at <u>www.modbus.org</u>.

The PROFIBUS user organization e.V. (PNO) provides detailed information on the subject of PROFIBUS on the Internet at <u>www.profibus.com</u>.

Connecting the Profibus	The Profibus / Modbus cable is connected to the IQ SENSORNET using
/ Modbus cable	a 9-pin D-SUB connector on the top of the housing.

Suitable cables	Fieldbus type	Cables
	Profibus	PROFIBUS cable
	Modbus	Cable for RS485 (e.g. PROFIBUS cable)

Connectors to be used	Manufacturer	Туре
	Phoenix Contact GmbH & Co. KG Flachsmarkt 8 32825 Blomberg Germany http://www.phoenixcontact.com	VS-09-PROFB-SC (Phoenix article no. 1654549, with screwed contacts, available from YSI under the order no. 902 888Y)
		VS-09-PROFB-SP (Phoenix article no. 1654345, with spring contacts)

To remove the blind plug, lift the safety bracket with a suitable screw driver at both clamps on the left and right side (see Fig. 2-1).

Fig. 2-1 Removing the safety bracket (example: MIQ/MC2, MIQ/MC3)

CAUTION

If water gets into the enclosure of a module with internal power supply, there is danger of an electric shock.

If water gets into the enclosure of an MIQ module, there is a risk of short circuits.

To prevent the enclosures of the IQ SENSORNETfrom being penetrated by water the following must be observed:

- Follow the safety instructions of the IQ SENSORNET system operating manual.
- Use connectors recommended by YSI only.
- When the connector is removed, the connection socket of the IQ SENSORNET must be closed with the blind plug and secured with the safety bracket.

2.2 Mounting the Phoenix connector

Fig. 2-2 IQ SENSORNET modules with Phoenix connector

Phoenix	connector	IQ SENSORNET instrument			
Wire (color*)	Terminals	Pin Potential at instrument connector		Function	
		1		-	
		2		-	
red	1B and 2B	3	B line	Positive RxD/TxD according to RS 485 specifica- tion	
		4	RTS	Request To Send	
		5	GND BUS	Reference potential for data wires and terminating resistors	
		6	+5 V BUS	Supply voltage for terminating resistors	
		7		-	
green	1A and 2A	8	A line	Negative RxD/TxD according to RS 485 specifica- tion	
		9		-	

* Wire colors when using a standard PROFIBUS cable.

Please observe the operating manual of the connector.

2.3 Installing the Ethernet interface

The IQ SENSORNET system can be linked to a LAN via the following modules:

- MIQ/MC2, MIQ/MC3
- DIQ/S 28X-E[F]

Basic knowledge of network engineering is helpful when establishing a local network.

Depending on the network configuration, several settings have to be made on the individual network components.

Settings that concern network components from third-party manufacturers (such as the router) are only referred to in general here. Detailed information in which menus the settings should be done are given in the respective operating manual of your instrument.

If you have no network knowledge, please contact your network administrator.

Profinet, Modbus TCP and Ethernet IP use the same interface (Ethernet) and the same cable type (Ethernet) for data exchange.

2.3.1 Communication via Ethernet

The IQ SENSORNET provides an interface for Fast Ethernet (100 MBit/s).

If configured as a DHCP client, the IQ SENSORNET can automatically get its IP settings from a DHCP server in the network.

2.3.2 Ethernet connection in case of indoor installation

The Ethernet cable is connected to the IQ SENSORNET via the RJ45 connector of the following modules:

- MIQ/MC2, MIQ/MC3
- DIQ/S 28X-E[F]

2.3.3 Ethernet connection in case of outdoor installation (DIQ/S28X-E[F])

To ensure a safe Ethernet communication with outdoor installation, the moisture protection (ADA/E) available as an accessory has to be mounted. Installation instructions are given with the accessory.

2.3.4 Ethernet connection in case of outdoor installation (MIQ/MC2, MIQ/MC3)

When plugged in, the RJ45 socket is not sufficiently protected against moisture. With outdoor installation, the Ethernet cable must therefore be clamped directly on the PCB of the MIQ/MC2 or MIQ/MC3 controller to ensure a safe Ethernet communication. For this purpose there is a 4-pole LSA terminal strip and a shielding terminal on the main PCB. An LSA punch down tool is required for the assembly.

Connecting the Ethernet cable with the main PCB

- 1 Open the MIQ module.
- 2 Disconnect the flat flexible cable (pos. 1 in Fig. 2-4) from the main PCB.

Fig. 2-3 Ethernet connection with RJ45 socket (MIQ/MC2)

MIQ/MC3

Fig. 2-4 Ethernet connection with RJ45 socket (MIQ/MC3)

3	Unscrew the RJ45 socket enclosure (pos. 2 in Fig. 2-4).
4	Screw a cable gland with sealing ring into the free duct. Then loosen the cap nut of the cable gland.

Fig. 2-5 Ethernet connection via terminal strip (example: MIQ/MC2, MIQ/MC3 likewise)

5	Strip the Ethernet cable for approx. 2 cm and untwist the Rx+, Rx-, Tx+ and Tx wires.
6	Carefully slash the cable shield (foil + netting) lengthwise and put it backwards over the cable sheath (pos. 3 in Fig. 2-5).
7	Feed the Ethernet cable through the cable gland into the module housing.
8	Where the cable shield was put backwards, press the Ethernet cable into the shielding terminal (pos. 4 in Fig. 2-5). The shield-ing terminal must contact the cable shield across a wide area.
9	Connect the Rx+, Rx-, Tx+ and Tx- wires to the LSA terminal strip with the aid of an LSA punch down tool. Make sure that the cable assignment agrees with the specification on the terminal label under the terminal strip.
10	Fasten the cap nut of the screwed cable gland.
11	Close the module.

3 Configuring the IQ SENSORNET

3.1 Configuring the IQ SENSORNET for Profibus

3.1.1 Setting the PROFIBUS address

Opening the setting menu for Profibus	1	Open the setting menu with <s></s> .
	2	For MIQ/MC2, MIQ/MC3, DIQ/S28X-E[F]: Press <▲▼◀▶> and < OK> to select and confirm the menu item, <i>Settings bus interfaces</i>
	3	Select and confirm the bus interface with <▲▼◀▶> and < OK >.

Settings	Setting	Selection/Valu es	Explanation
	Device address	1 126	Instrument address of the IQ SENSORNET in the Profibus

- If the Profibus data connection is working, there are the following entries in the menu for Profibus settings:
- * Online (data exc): Yes

* *Baud rate*: 19.2 kbit/s (no value when there is no connection)

4 Edit the settings.

To accept all settings, you have to highlight the *Save and quit* menu item at the lower end of the setting table and to confirm with **<OK>**. If you exit the setting table via **<M>**, **<ESC>**/*Quit* or the *Quit* menu item, all changes are ignored.

Checking the connection (general)

LEDs (MIQ/MC2, MIQ/MC3) A functioning Profibus data connection is displayed in the menu for Profibus settings (see above).

A functioning Profibus data connection is additionally displayed by two LEDs on the Profibus module.

3.1.2 GSD file

The GSD file contains all necessary information on the Profibus module and is required by the configuration program of the Profibus master. The current GSD file is provided on the Internet at www.YSI.com.

3.2 Configuring the IQ SENSORNET for Modbus RTU

3.2.1 Setting the Modbus interface parameters

Opening the setting menu for Modbus RTU

1	Open the setting menu with <s></s> .
2	For MIQ/MC2, MIQ/MC3, DIQ/S28X-E[F]: Press <▲▼◀▶> and < OK > to select and confirm the menu item, <i>Settings bus interfaces</i>
3	Select and confirm the bus interface with $\langle A \nabla \langle P \rangle$ and $\langle OK \rangle$.

Settings

Setting	Selection/Valu es	Explanation
Device address	1 247	Instrument address of the IQ SENSORNET in the Modbus RTU
Baud rate	1200 2400 4800 9600 19200 38400 57600	Baud rate
Parity	None Even Odd	Parity None (2 stop bits) <i>Even</i> (1 stop bit) <i>Odd</i> (1 stop bit)

4 Edit the settings.

To accept all settings, you have to highlight the *Save and quit* menu item at the lower end of the setting table and to confirm with **<OK>**. If you exit the setting table via **<M>**, **<ESC>**/*Quit* or the *Quit* menu item, all changes are ignored.

3.3 PROFIBUS / Modbus RTU checklist

The following checklist supports you when planning, projecting and installing a PROFIBUS or Modbus RTU system with the IQ SENSORNET. For smooth operation, you should be able to answer all questions with "Yes".

- Is the [bus system] (bus segment) installed without branch lines?
- Was the correct cable used (e.g. PROFIBUS cable, see section 2.1)?
- Are the poles of the signal lines A line and B line correctly connected at all bus connections?
- Is it guaranteed that there is no short-circuit between A line, B line and cable shielding?
- Is the shielding installed free of interruptions?
- Are the guidelines for shielding and grounding being observed, and doesn't any unallowed potential equalization current flow via the shielding?
- Is the maximum cable length (per bus segment) observed for the corresponding baud rate?
- Do all devices support the required baud rate?
- Only for Profibus: With 12 Mbit/s transmission rate only: Are the bus plugs suitable for this baud rate?
- Are exactly two terminators switched on at the ends of the [bus system] (bus segment)?
- Are the terminators supplied with voltage so the following applies: U_{B line} - U_{A line} > + 500 mV?
- Do all devices have individual bus addresses?
- After changing the bus address, have the devices been restarted (switched off and on again)?
 Note: The IQ SENSORNET does not have to be restarted.
- Do the addresses projected in the master correspond to the actual addresses?
- Only for Profibus: Are all addresses less than or equal to the parameter HSA and less

than 126 (HSA = Highest Station Address)?

- Only for Profibus: Is the currently valid GSD being used? If you are in doubt, download it from the Internet.
- Only for Profibus: Have admissible bus parameters been set only? If you are in doubt set them to default values.
- Is consistent access to a sensor data block by the bus master ensured?
- After commissioning: Do all devices signal error-free behavior? (IQ SENSORNET: status "Online" in the measured value and status display).
- Only for Profibus: A functioning Profibus connection displays the following entries in the menu for Profibus settings (<S>/Settings bus interfaces/Profibus):
 - * Online (data exc): Yes

* *Baud rate*: 19.2 kbit/s (no value when there is no connection) Only for MIQ/MC2 and MIQ/MC3:

A functioning data connection is additionally displayed by two LEDs on the Profibus module (see section 3.1.1).

3.4 Configuring the IQ SENSORNET for Ethernet fieldbuses

Opening the settings menu	1	Open the setting menu with <s></s> .	
	2	Press < ▲▼ ∢ ▶> and <ok></ok> to select and confirm the menu item, <i>System settingsTCP/IP settings</i>	

Setting	Selection/ Values	Explanation
DHCP	Yes	The IQ SENSORNET is configured as a DHCP client. If a DHCP server is in the network, the IQ SENSORNET receives all other network settings from the DHCP server.
	No	The IQ SENSORNET is not configured as a DHCP client. All other settings have to be done as required.
IP address	Address	Permanent IP address for the IQ SENSORNET in the LAN (if <i>DHCP No</i>).

Setting	Selection/ Values	Explanation
Subnet mask	Address	Subnet mask (if <i>DHCP No</i>). The subnet mask depends on the network size (for small networks: e.g. 255.255.255.0).
DNS server	Address	 Entry for fieldbus not required. For a connection with the Internet (if <i>DHCP No</i>), e.g.: IP address of the DNS server in the network Entry of <i>IP address</i> or e.g. 127.0.0.1
Standard gateway Address Entry for a co • IP ad the Ir		 Entry for fieldbus not required. For a connection with the Internet (if <i>DHCP No</i>), e.g.: IP address of the instrument establishing the access to the Internet
		• Entry of <i>IP address</i> or e.g. 127.0.0.1

3.4.1 GSDML file for Profinet

The GSDML file contains all necessary information on the Profinet module and is required by the configuration program for the Profinet master.

The current GSDML file is available on the Internet at www.YSI.com.

3.4.2 EDS file for Ethernet-IP

The EDS file contains information on the Ethernet-IP module. It is evaluated by some configuration programs.

The current EDS file is available on the Internet at www.YSI.com.

3.5 Assigning the sensor numbers

The basis for data transmission between the superordinate control system (PLC) and the IQ SENSORNET is formed by the unique assignment of a sensor to its sensor number (Sxx) in the IQ SENSORNET system. During the initial commissioning, the sensor numbers are assigned by the system in the order in which the sensors are recognized by the system.

Preparation of the IQ SENSORNET for communication with a fieldbus may require, e.g. the following:

• Creating an IQ SENSORNET system with specific assignment of sen-

sor numbers to sensors

- Creating several IQ SENSORNET systems with the identical assignment of sensor numbers to sensors
- Changing the order of the sensors in an already installed system

3.5.1 Creating the assignment of sensor numbers

You want to install an IQ SENSORNET system and, at the same time, to create a specific sequence of sensor number assignments to the sensors.

1	Carry out a system start without any sensors (see system oper- ating manual).
2	Connect the sensors to the system in the required order. After connecting each sensor, wait until the sensor is recog- nized by the system (see system operating manual, chapter Installation).

3.5.2 Changing the assignment of sensor numbers

You want to change the assignment of sensor numbers to the sensors in an already running IQ SENSORNET system.

Change sensor no. menu

Prerequisite:

IQ SENSORNET system with controller software version 3.50 or higher.

1	Open the setting menu with <s></s> .
2	 IQ SENSORNET System 2020 3G, System 2020 XT, System 28X: Using <▲▼◀►> and <ok>, select and confirm the menu item, System settings / Service / Change sensor no</ok> IQ SENSORNET System 182: Using <▲▼◀►> and <ok>, select and confirm the menu item System / Change sensor no</ok>
3	IQ SENSORNET System 2020 3G, System 2020 XT, System 28X: Using <▲▼◀▶> and < OK >, select and confirm the column with the sensor numbers.

4	Select and confirm a sensor with $ \langle A \nabla \langle P \rangle $ and $ \langle OK \rangle$.
	An entry field for the new sensor number pops up.
5	Enter and confirm a new sensor number for the sensor selected with $\langle \Delta \nabla \rangle$ and $\langle OK \rangle$. All sensor numbers that were changed are given an asterisk (*).
6	Change further sensor numbers as necessary.
7	Using <▲▼◀▶> and <ok>, select and confirm Save and quit. IQ SENSORNET System 2020 3G, System 2020 XT, System 28X: A safety query pops up. IQ SENSORNET System 182: The new sensor numbers are active.</ok>

Links and measured value recordings for all sensors marked by an asterisk (*) are erased.

8 IQ SENSORNET System 2020 3G, System 2020 XT, System 28X: Confirm the safety query with Yes.

Disconnecting / connecting all sensors of the IQ SENSORNET You can also change the sensor numbers in the system by disconnecting all sensors, erasing any inactive datasets and then reconnecting all sensors in the correct order.

1 Unplug all sensors from the IQ SENSORNET.

When the inactive datasets are deleted, all settings for the sensors are deleted as well.

2 Delete all inactive datasets in the list of sensors (see System operating manual, chapter *Deleting inactive datasets of sensors*).
 3 Connect the sensors to the system in the required order. After connecting a sensor, wait until the sensor is recognized by the system (see system operating manual, chapter Installation).

3.5.3 Creating the identical assignment of sensor numbers in several systems
You want to install several identical IQ SENSORNET systems and, at the same time, to create the same sequence of sensor number assignments to the sensors in all systems.
To do so, you can save the system configuration of a system configured as a model via the USB interface or via a network connection and then load it to other systems.

USB interface	1	Save the configuration from the model to a USB memory device (see system operating manual of your system).
	2	Connect the USB memory device with the configuration data to the target system and load the configuration (see system operating manual of your system).
Network connection	1	Save the configuration from the model to a PC via a network connection (see system operating manual of your system).
	2	 Connect the PC to the target system via a network and load the configuration. MIQ/MC2, MIQ/TC 2020 XT: see operating manual IQ Software Pack CONNECT.
		 MIQ/MC3, MIQ/TC 2020 3G, DIQ/S 28X-E[F]: see system operating manual of your system (section IQ WEB CONNECT).

4 Communication with fieldbuses

The IQ SENSORNET monitors the current state of each sensor operated on the system. The sensor status documents sensor information (measured value status and status info of the sensor) and current processes (e.g. calibration or cleaning).

The sensor status is superordinate to the measured value status. The influence of the sensor status on the measured value is documented with the status descriptions.

For the measured value to be evaluated, e.g. by a superordinate control system such as PLC, the sensor status and measured value status also have to be taken into account together with the measured value. A measured value is suitable for further evaluation if both of the following conditions are met:

1st	Sensor status	MEASURE
2nd	Measured value status	VALID

Details on the communication options with a fieldbus are given in the respective sections.

Fieldbus	Query	see	
Profibus*, Profinet			
DP(V0), Profinet	several sensors	section 4.1	
	one sensor	section 4.4	
DPV1	several sensors	section 4.2	
Modbus		section 4.5	
Ethernet/IP	all sensors	section 4.3	
	one sensor	section 4.4	

* Communication with a Profibus applies to the current GSD file (version > 1.22). The current GSD file is provided on the Internet at www.YSI.com.

The query of several sensors under Profibus is supported by the Profibus controller from version 3.50 (for the following instruments: MIQ/MC2-PR, MIQ/2-PR, MIQ/MC3-PR, DIQ/S 182, DIQ/S 28X-PR).

	4.1	Profibus DP(V0), Profinet
	4.1.1	Profinet module (query format)
	The fo	llowing module (query format) is available:
SensorData	Data block per sensor: 16 bytes You can simultaneously transmit the data of up to 20 sensors.	
	4.1.2	Profibus modules (query formats)
	A Profibus or Profinet instrument can transmit up to 244 bytes of user data with the Profibus DP(V0) protocol. The number of the sensors that can be queried at the same time depends on the size of the data block per sensor.	
	The fo	llowing modules (query formats) are available:
SensorData	Data k With ti (15 * 2	block per sensor: 16 bytes his you can simultaneously transmit the data of up to 15 sensors 16 bytes = 240 bytes).
SensorData compact	Data t With ti (20 * 2	block per sensor: 12 bytes his you can simultaneously transmit the data of up to 20 sensors 12 bytes = 240 bytes).
	_	As a rule, some sensor data are already known at the time

As a rule, some sensor data are already known at the time of the PLC programming and do not have to be evaluated. These sensor data are not transmitted in the module *SensorData compact*:

- Sensor number
- Sensor model
- Measuring mode

4.1.3 Configuration

In the Profibus instrument configuration, a slot is assigned to each sensor in the IQ SENSORNET. The number of the slot corresponds to the sensor number in the IQ SENSORNET.

To query sensor data, assign a module (*SensorData* or *SensorData compact*) to each slot (sensor) you want to query.

Query

SensorData

SensorData compact

For consistent access with a Siemens PLC with programming language STEP7, the following commands have to be used:

- SFC14 (for reading)

4.1.4 Data of a module

SensorData:	16 bytes - from the IQ SENSORNET to the superordinate control system (PLC)
SensorData compact (only Profibus):	12 bytes - from the IQ SENSORNET to the superordinate control system (PLC)

Byte		Information	Module	
Sensor- Data	SensorData compact (only Profibus):		Data type	Bits
1	-	Sensor number	Int 8	7-0
2	1	Sensor status	Int 8	7-0
3	-	Sensor model	Int 16	15-8
4	-			7-0
5	2	Status info	Int 16	15-8
6	3			7-0
7	-	Measuring mode	Int 8	7-0
8	4	Status of main measured value	Int 8	7-4
		Status of secondary measured value		3-0
9	5	Main measured value (IEEE-754	Float 32	31-24
10	6	floating point, 32-bit)		23-16
11	7			16-8
12	8			7-0
13	9	Secondary measured value	Float 32	31-24
14	10	(IEEE-754 floating point, 32-bit)		23-16
15	11			16-8
16	12			7-0

4.1.5 Example

Querying sensors 2
and 5Corresponding to the sensor numbers (Sxx) in the IQ SENSORNET, the
slots have to be assigned gap-free to the last sensor to be queried.ProfibusSlots for sensors not required have to be assigned to the module empty
slot.

Profinet Slots for sensors not required may remain unoccupied.

	Configuration		
Slot	Module		
1	empty slot (only Profibus; leave unoccupied for Profinet)		
2	SensorData		
3	empty slot		
4	empty slot		
5	SensorData		

Byte		Sensor data (slot 2 = sensor 2)		
SensorData	SensorData compact (only Profibus):	Value	Information	Meaning of the value
1	-	02h	Sensor number	02h (Int 8)> 2 Sensor number S02
2	1	02h	Sensor status	02h (Int 8)> MEASURE see section 5.2
3	-	04h	Sensor model	0401h (Int 16)
4	-	01h	Sensor model	see section 5.5
5	2	00h	Status info	0000h (Int 16)
6	3	00h	Status info	see section 5.6
7	-	00h	Measuring mode	00h (Int 8)> FNU <i>Turb</i> see section 5.7
8	4	14h	Measured value status	14h (Int 8) Main measured value (bits 7-4): 1h> VALID Secondary measured value (bits 3-0): 4h> MISSING see section 5.3

B	yte		Sensor d	ata (slot 2 = sensor 2)
SensorData	SensorData compact (only Profibus):	Value	Information	Meaning of the value
9	5	42h	2h Main measured Eh 6h	429E46C2h (Float 32)
10	6	9Eh		> 79,1382 Measured parameter and unit, see byte 10 (measuring mode)
11	7	46h		
12	8	C2h		
13	9	00h	Secondary measured value	0000000h (Float 32)
14	10	00h		> 0 but measured value invalid (MISSING),
15	11	00h		see byte 11 (measured value status)
16	12	00h		

4.2 **Profibus DPV1**

4.2.1 Modules (query formats)

A Profibus instrument can transmit up to 244 bytes of user data per query with the Profibus DPV1 protocol. The number of the sensors that can be queried at the same time depends on the size of the data block per sensor. The following modules (query formats) are available.

SensorDataData block per sensor: 16 bytesWith this you can simultaneously transmit the data of up to 15 sensors
(15 * 16 bytes = 240 bytes).

SensorData compact Data block per sensor: 12 bytes With this you can simultaneously transmit the data of up to 20 sensors (20 * 12 bytes = 240 bytes).

As a rule, some sensor data are already known at the time of the PLC programming and do not have to be evaluated. These sensor data are not transmitted in the module *SensorData compact*:

- Sensor number
- Sensor model
- Measuring mode

4.2.2 Data query

The IQ SENSORNET provides the sensor data for read access only. Write access is not possible.

The data to be queried with Profibus DPV1 are addressed via slot, index and length data.

SensorData Each sensor in the IQ SENSORNET is assigned an index in slot 0 of the PLC. Data required for the query:

Data query		
Slot	0	
Index	Sensor number of the first sensor to be queried	
Length	Number of bytes to be queried	

SensorData compact

Each sensor in the IQ SENSORNET is assigned an index in slot 0 of the PLC. Data required for the query:

Data query			
Slot	0		
Index	100 + sensor number of the first sensor to be queried		
Length	Number of bytes to be queried		

4.2.3 Data block of the sensors

The data block contains the data of the sensors in the order of their registering to the IQ SENSORNET (Sxx number).

SensorData: 16 bytes - from the IQ SENSORNET to the superordinate control system (PLC)

SensorData compact: 12 bytes - from the IQ SENSORNET to the superordinate control system (PLC)

Byte		Information	Module	
SensorData	SensorData compact		Data type	Bits
1	-	Sensor number	Int 8	7-0
2	1	Sensor status	Int 8	7-0
3	-	Sensor model	Int 16	15-8
4	-			7-0
5	2	Status info	Int 16	15-8
6	3			7-0
7	-	Measuring mode	Int 8	7-0
8	4	Status of main measured value	Int 8	7-4
		Status of secondary measured value		3-0
9	5	Main measured value (IEEE-754	Float 32	31-24
10	6	floating point, 32-bit)		23-16
11	7			16-8
12	8			7-0
13	9	Secondary measured value	Float 32	31-24
14	10	(IEEE-754 floating point, 32-bit)		23-16
15	11			16-8
16	12			7-0

4.2.4 Example

Examples of query formats

Querying sensors 2 and 5

SensorData

Data query		
Slot	0	
Index	2 (sensor number of the first sensor to be queried)	
Length	64 bytes = 4 * 16 bytes	
	4 (number of consecutive sensors) 16 (bytes per sensor in the module <i>SensorData</i>)	

SensorData compact

Data query		
Slot	0	
Index	102 (= 100 + 2) 2 (sensor number of the first sensor to be queried)	
Length	 48 bytes (= 4 * 12 bytes) 4 (number of consecutive sensors) 12 (bytes per sensor in the module <i>SensorData compact</i>) 	

r er	Byte		Sensor data		
Senso numbo Sxx	SensorData	SensorData compact	Value	Information	Meaning of the value
	1	-	02h	Sensor num- ber	02h (Int 8)> 2 Sensor number S02
	2	1	02h	Sensor status	02h (Int 8)> MEASURE see section 5.2
	3	-	04h	Sensor model	0401h (Int 16)
	4	-	01h	Sensor model	> VisoTurb 700 IQ see section 5.5
	5	2	00h	Status info	0000h (Int 16)
	6	3	00h	Status info	see section 5.6
02	7	-	00h	Measuring mode	00h (Int 8)> FNU <i>Turb</i> see section 5.7
	8	4	14h	Measured value status	14h (Int 8) Main measured value (bits 7-4): 1h> VALID Secondary measured value (bits 3-0): 4h> MISSING see section 5.3
	9	5	42h	Main mea- sured value	429E46C2h (Float 32) > 79,1382 Measured parameter and unit, see byte 10 (measuring mode) 00000000h (Float 32)> 0 but measured value invalid (MISSING), see byte 11 (measured value sta-
	10	6	9Eh		
	11	7	46h	-	
	12	8	C2h		
	13	9	00h	Secondary	
	14	10	00h	value	
	15	11	00h		
	16	12	00h		
03	17-32	13-24			
04	33-48	25-36			
05	49-64	37-48			

4.3 EtherNet/IP

4.3.1 Modules (query formats)

The sensor data are transferred as data blocks of 16 bytes per each sensor. The data of up to 30 sensors are transferred (30×16 bytes = 480 bytes).

You can also query the sensor data individually (see section 4.4).

4.3.2 Configuration

Use the following configuration data:

Connection	GetSensorDataAll	
------------	------------------	--

Use the following configuration data if you do not use the EDS file.

Output Assembly	Instance ID = 254 (InputOnly)	0 bytes
Input Assembly	Instance ID = 104 (SensorDataAll)	480 bytes

4.3.3 Data block of the sensors

The data block contains the data of the sensors corresponding to the sensor number (Sxx number) in the IQ SENSORNET.

16 bytes - from the IQ SENSORNET to the superordinate control system (PLC)

Byte	Information	Modu	le
		Data type	Bits
1	Sensor number	Int 8	7-0
2	Sensor status	Int 8	7-0
3	Sensor model	Int 16	15-8
4			7-0

Byte	Information	Module	
		Data type	Bits
5	Status info	Int 16	15-8
6			7-0
7	Measuring mode	Int 8	7-0
8	Status of main measured value	Int 8	7-4
	Status of secondary measured value		3-0
9	Main measured value (IEEE-754	Float 32	31-24
10	floating point, 32-bit)		23-16
11			16-8
12			7-0
13	Secondary measured value	Float 32	31-24
14	(IEEE-754 floating point, 32-bit)		23-16
15			16-8
16			7-0

4.3.4 Example

Configuration		
Connection	GetSensorDataAll	

or	Byte	Sensor data			
Sens numb Sxx		Value	Information	Meaning of the value	
	1	02h	Sensor number	01h (Int 8)> 1 Sensor number S01	
	2	02h	Sensor status	02h (Int 8)> MEASURE see section 5.2	
	3	04h	Sensor model	0401h (Int 16)	
	4	01h	Sensor model	> VisoTurb 700 IQ see section 5.5	
	5	00h	Status info	0000h (Int 16)	
01	6	00h	Status info	> no errors see section 5.6	
	7	00h	Measuring mode	00h (Int 8)> FNU <i>Turb</i> see section 5.7	
	8	14h	Measured value status	14h (Int 8) Main measured value (bits 7-4): 1h> VALID Secondary measured value (bits 3-0): 4h> MISSING see section 5.3	
	9	42h	Main mea- sured value	429E46C2h (Float 32) > 79,1382 Measured parameter and unit, see byte 10 (measuring mode)	
	10	9Eh			
	11	46h			
	12	C2h			
	13	00h	Secondary	00000000h (Float 32) > 0 but measured value invalid (MISSING), see byte 11 (measured	
	14	00h	value		
	15	00h			
	16	00h		value status)	
02	17- 32				

ັອັ Byte		Sensor data			
Sens numt Sxo		Value	Information	Meaning of the value	
03	33- 48				
04	49- 64				
÷					
30	465 - 480				

4.4 Profibus DP(V0) and EtherNet/IP Query of individual sensors

The sensor number (Sxx) is the identification for a sensor. The sensor number is always transmitted in the first byte of the output and input data. Thus the control system (PLC) can clearly query data of individual sensors.

The data is transferred cyclically in two steps:

- Output data of the PLC: The superordinate control system (PLC) sends a prompt to the IQ SENSORNET to provide data of the sensor with a certain sensor number.
- Input data of the PLC:

The IQ SENSORNET checks whether the prompted sensor number is available and returns the data of the sensor with the relevant sensor number to the superordinate control system (PLC).

Fig. 4-1 Data transmission in (Profibus, Ethernet/IP)

4.4.1 Configuration

Profibus DP(V0)	Slot	1 (exclusively possible at slot 1)
	Module	SensorData select (only slot 1)

It is also possible to query several sensors simultaneously (see section 4.1).

Data access must be consistent.

For consistent access with a Siemens PLC with programming language STEP7, the following commands have to be used:

– Write: DPWR_DAT (SFC15)

– Read: DPRD_DAT (SFC14)

GetSensorData

Use the following configuration data if you do not use the EDS file.

Output Assembly	Instance ID= 101 (SensorSelector)	1 bytes
Input Assembly	Instance ID = 102 (SensorData)	16 bytes

If your PLC (e.g. Omron) only supports a granularity of 2 bytes (WORD) for the definition of EtherNet/IP access, select the connection *GetSensorData2B* for the query.

Connection GetS	ensorData2B
-----------------	-------------

Use the following configuration data if you do not use the EDS file.

Output Assembly	Instance ID = 103 (SensorSelector2B)	2 bytes
Input Assembly	Instance ID = 102 (SensorData)	16 bytes

You can also query all sensor data simultaneously (see section 4.3).

4.4.2 Data block for sensor selection (output data of the PLC)

1 byte - from the to the superordinate control system (PLC) to the IQ $\ensuremath{\mathsf{SensorNet}}$.

Byte	Information	Data form	nat
		Data type	Bits
1	Sensor number (Sxx) in the IQ SENSORNET	Int 8	7-0

4.4.3 Data block of the sensors (input data of the PLC)

16 bytes - from the IQ SENSORNET to the superordinate control system (PLC)

Byte	Information	Data format	
		Data type	Bits
1	Sensor number	Int 8	7-0
2	Sensor status	Int 8	7-0
3	Sensor model	Int 16	15-8
4			7-0
5	Status info	Int 16	15-8
6			
7	Measuring mode	Int 8	7-0
8	Status of main measured value	Int 8	7-4
	Status of secondary measured value		3-0
9	Main measured value (IEEE-754 floating point,	Float 32	31-24
10	32-DIt)		23-16
11			16-8
12			7-0
13	Secondary measured value (IEEE-754 floating point,	Float 32	31-24
14	5 2- μι)		23-16
15			16-8
16			7-0

4.4.4 Example

Querying sensor 02

Configuration				
Byte	Valu e	Information	Meaning of the value	
1	02h	Sensor number (Sxx) in the IQ SENSORNET	02h (Int 8)> 2 Sensor number S02	

Sensor data			
Byte	Value	Information	Meaning of the value
1	02h	Sensor number	02h (Int 8)> 2 Sensor number S02
2	02h	Sensor status	02h (Int 8)> MEASURE see section 5.2
3	04h	Sensor model	0401h (Int 16)
4	01h	Sensor model	see section 5.5
5	00h	Status info	0000h (Int 16)
6	00h	Status info	see section 5.6
7	00h	Measuring mode	00h (Int 8)> FNU <i>Turb</i> see section 5.7
8	14h	Measured value status	14h (Int 8) Main measured value (bits 7-4): 1h> VALID Secondary measured value (bits 3-0): 4h> MISSING; see section 5.3
9	42h	Main measured	429E46C2h (Float 32)
10	9Eh	value	> 79,1382 Measured parameter and unit,
11	46h		see byte 10 (measuring mode)
12	C2h		
13	00h	Secondary mea-	00000000h (Float 32)
14	00h	sured value	but measured value invalid (MISSING),
15	00h		see byte 11 (measured value status)
16	00h		

4.5 Communication with Modbus RTU, Modbus TCP

4.5.1 Data transmission

On each query of sensor data with the Modbus protocol, a block of consecutive registers is read.

Query and response
telegramData transmission takes place via query and response telegrams. The
form of the telegrams is determined by the Modbus RTU protocol.
The Modbus master transmits a query telegram with a Modbus com-
mand to the Modbus slave (here, the IQ SENSORNET). The Modbus
slave transmits a response telegram with the requested data or an error
message.

4.5.2 Query format

SupportedThe IQ SENSORNET provides the data block for read access only. Writ-Modbus commandsing Modbus commands are not carried out.

The following commands are available:

Modbus commands	Command code
Read Input Register	04h
Read Holding Register	03h

For a query of sensor data, determine the first register and the number of registers to be read.

	Exemple: Determine the first register with data black for the sense
register to be read	R = [(Sxx - 1) * 8] + 1.
Determining the first	The first register to be read depends on the sensor number (Sxx):

Example: Determine the first register with data block for the sensor S02:

R = [(2 - 1) * 8] + 1 = 9

The number of registers to be read for one sensor data block is 8 registers.

With one Modbus query, up to 125 registers (15 data blocks) can be read.

4.5.3 Data block of the sensors

The data block contains the data of the sensors in the order of their registering to the IQ SENSORNET (Sxx number).

The data of a sensor are stored in 8 registers each.

	Modbus		Information	Data format	
	Register	Bits		Data type	Bits
	0001	1-8	Sensor number (S01)	Int 8	7-0
	0001	9-16	Sensor status	Int 8	7-0
	0002	1-16	Sensor model	Int 16	15-0
~	0003	1-16	Status info	Int 16	15-0
r S0	0004	1-8	Measuring mode	Int 8	7-0
osue	0004	9-16	Measured value status	Int 8	7-0
ũ	0005	1-16	Main measured value (IEEE-754 floating point,	Float 32	31-16
	0006	1-16	32-bit)		15-0
	0007	1-16	Secondary measured value (IEEE-754 floating point,	Float 32	31-16
	0008	1-16	32-bit)		15-0
	0009	1-8	Sensor number (S02)	Int 8	7-0
	0009	9-16	Sensor status	Int 8	7-0
	0010	1-16	Sensor model	Int 16	15-0
2	0011	1-16	Status info	Int 16	15-0
r S0	0012	1-8	Measuring mode	Int 8	7-0
osue	0012	9-16	Measured value status	Int 8	7-0
Ň	0013	1-16	Main measured value (IEEE-754 floating point,	Float 32	31-16
	0014	1-16	32-bit)		15-0
	0015	1-16	Secondary measured value (IEEE-754 floating point,	Float 32	31-16
	0016	1-16	32-bit)		15-0
÷	0017	1-8		Int 8	7-0
S03	0018	9-16		Int 8	7-0
Sensor					

The counting method of the Modbus registers and Modbus bits and the allocation of MSB and LSB is different from the usual method of most programming languages.

	Modbus	Usually
Count start of the register	1	0
MSB* allocation of the register	Bit 1	Bit 15
LSB* allocation of the register	Bit 16	Bit 0

* MSB = Most significant bit, LSB = Least significant bit

4.5.4 Example

Querying sensor S02

	Modbus query			
Byte	Value	Information	Meaning of the value	
1	01h	Modbus address of the IQ SENSORNET	01h> 1	
2	04h	Function	04h> 4 Read Input Register see section 4.5.2	
3	00h	Start address HI	0008h> 8	
4	08h	Start address LO	(Modbus counting method)	
5	00h	Number of HI regis- ters	0008h> 8 8 registers	
6	08h	Number of LO regis- ters		
7	70h	CRC (HI)	Checksum (CRC)	
8	0Eh	CRC (LO)		

Modbus response			
Byte	Value	Information	Meaning of the value
1	01h	Modbus address of the IQ SENSORNET	01h> 1

Modbus response			
Byte	Value	Information	Meaning of the value
2	04h	Function	04h> 4 Read Input Register
3	10h	Number of bytes	10h> 16 16 bytes (8 registers)
4	02h	Contents of register 9 (HI) = sensor number	02h (Int 8)> 2 Sensor number S02
5	02h	Contents of register 9 (LO) = sensor status	02h (Int 8)> MEASURE see section 5.2
6	04h	Contents of register 10 (HI) = sensor model	0401h (Int 16) > VisoTurb 700 IQ
7	01h	Contents of register 10 (LO) = sensor model	see section 5.5
8	00h	Contents of register 11 (HI) = status info	0000h (Int 16) > no errors
9	00h	Contents of register 11 (LO) = status info	see section 5.6
10	00h	Contents of register 12 (HI) = measuring mode	00h (Int 8)> FNU <i>Turb</i> see section 5.7
11	14h	Contents of register 12 (LO) = measured value status	14h (Int 8) Main measured value (bits 7-4): 1h> VALID Secondary measured value (bits 3-0): 4h> MISSING see section 5.3

	Modbus response					
Byte	Value	Information	Meaning of the value			
12	42h	Contents of register 13 (HI) = main measured value	429E46C2h (Float 32) > 79,1382			
13	9Eh	Contents of register 13 (LO) = main measured value	unit, see byte 10 (measuring mode)			
14	46h	Contents of register 14 (HI) = main measured value				
15	C2h	Contents of register 14 (LO) = main measured value				
16	00h	Contents of register 15 (HI) = secondary mea- sured value	00000000h (Float 32) > 0			
17	00h	Contents of register 15 (LO) = secondary measured value	(MISSING), see byte 11 (measured value status)			
18	00h	Contents of register 16 (HI) = secondary mea- sured value				
19	00h	Contents of register 16 (LO) = secondary measured value				
20	23h	CRC (HI)	Checksum (CRC)			
21	5Eh	CRC (LO)				

5 Encoded data for fieldbus communication

5.1 Data formats of the sensor datablock

Measured values (Float 32) The data for the main and secondary measured values are transmitted in the IEE-754 standard 32-bit floating point format.

Address	Bit representation		
	MSB*	LSB*	
Offset 0h bits 31-24	S E E E E E	EE	S = sign (bit 31) E = exponent
Offset 1h bits 23-16	E,M,M,M,M,M	MM	(bits 30-23) M = mantissa (bits 22-0)
Offset 2h bits 15-8	<u>M, M, M, M, M</u>	ММ	
Offset 3h bits 7-0		ММ	

* MSB = Most significant bit, LSB = Least significant bit

If not all of the bits of the exponent are 0, the value is calculated according to:

$$V = -1^{S} \cdot 2^{E-127} \cdot (1 + M_{b22} \cdot 2^{-1} + M_{b21} \cdot 2^{-2} + M_{b20} \cdot 2^{-3} + \dots + M_{b0} \cdot 2^{-23})$$

If all of the bits of the exponent are 0, the value is calculated according to:

$$V = -1^{S} \cdot 2^{-126} \cdot (M_{b22} \cdot 2^{-1} + M_{b21} \cdot 2^{-2} + M_{b20} \cdot 2^{-3} + \dots + M_{b0} \cdot 2^{-23})$$

A value is 0 if all the bits of both the exponent as well as the mantissa are 0.

Evaluation		Meaning
Measured value	0	Check the measured value status
Measured value status	<> 1	The measured value is invalid (error)

Apart from the byte order described in the bit representation, another order of the bytes is also possible. Opposite to the order described, the two lower bytes have been exchanged with the two upper bytes in this order (b4 b3 b2 b1 - b2 b1 b4 b3).

For fieldbus applications that can independently interpret floating point numbers (or allow to select a data format for certain registers), the byte order the data interpretation is based on should be checked.

Sensor model Status info (INT16)

The data for the sensor model and status info is transmitted as INT16, i.e. consists of 2 bytes. The assignment is carried out in Motorola format (the higher value byte first).

Address	Bit representation		Information
	MSB	LSB	
Offset 0h bits 15-8			High byte
Offset 1h bits 7-0			Low byte

Measured value status
(Int8)The data for the measured value status of the main and secondary
measured values are encoded jointly into a single byte. Bits 7-4 encode
the status of the main measured value, bits 3-0 encode the status of the
secondary measured value.

Other data (INT8) All other data always consist of only a single byte (Int8).

5.2 Sensor status

The sensor status applies to both the main and secondary measured value of a sensor.

Code	Status	Meaning of the status
00h	UNUSED_ID	Sensor and sensor number are not available in the IQ SENSORNET system.
		The measured value status of the main and secondary measured value is MISSING (4h) (see section 5.3 MEASURED VALUE STATUS).
		The UNUSED_ID status also occurs when the fieldbus interface of the IQ SENSORNET does not receive any data from the IQ SENSORNET controller for more than 2 minutes. Possible cause: Communication malfunction or controller failure. The data transmitted last remain frozen for the two minutes delay time.
01h	INACTIVE	The sensor is currently inactive. The sensor number (ID) and respec- tive setting dataset are available in the IQ SENSORNET system. The sensor was removed from the IQ SENSORNET system or the commu- nication does not work.
		The measured value status of the main and secondary measured value is MISSING (4h) (see section 5.3 MEASURED VALUE STATUS). The measured value display on the terminal indicates <i>Init</i> or <i>Error</i> .
02h	MEASURE	The sensor is in measuring mode.
		The measured value status can be VALID, OFL or INVALID. The measured value display on the terminal indicates the valid mea- sured value, <i>OFL</i> or "" (invalid measured value).
		For the measured value to be evaluated, e.g. by a superordinate con- trol system, the sensor status and measured value status also have to be taken into account together with the measured value (see also sec- tion 5.3 MEASURED VALUE STATUS)
03h	CALIBRATE	The sensor is being calibrated. No measured value is available.
		The measured value status of the main and secondary measured value is MISSING (4h) (see section 5.3 MEASURED VALUE STATUS). The measured value display on the terminal indicates <i>Cal</i> .
04h	ERROR	The sensor is in a serious error status.

Code	Status	Meaning of the status
05h	MAINTENANCE	The sensor is in maintenance condition or a cleaning cycle (cleaning including adjustment phase) is active.
		The measured value display on the terminal shows a flashing mea- sured value or <i>Clean</i> . The measured value and measured value status are frozen while the sensor is in the MAINTENANCE condition. In the case of the measured value status VALID, the measured value is frozen with the value at the start of the MAINTENANCE status.

5.3 Measured value status

The measured value status is available for both the main and secondary measured value of a sensor.

Code	Status	Meaning of the status
1h	VALID	The measured value is valid.
		In the case of the sensor status MAINTENANCE, the measured value is frozen on the value of the start of the MAINTENANCE status. The measured value display of the IQ SENSORNET shows a flashing measured value or <i>Clean</i> .
2h	OFL	The measured value lies outside the selected measuring range.
		The transmitted measured value is set to 0. The measured value display of the IQ SENSORNET indicates OFL.
3h	INVALID	The measured value is invalid.
		The transmitted measured value is set to 0. The measured value display of the IQ SENSORNET indicates "" (invalid measured value).
4h	MISSING	The measured value cannot be determined or is not available.
		The transmitted measured value is set to 0. The measured value display of the IQ SENSORNET indicates <i>Cal</i> or <i>Error</i> .

5.4 Signaling the sensor status and measured value status in the IQ SENSORNET

5.4.1 Display in the measured value display on the terminal

	1	1	1	1
	VALID	OFL	INVALID	MISSING
MEASURE	Measured value	"OFL"	""	-
	-	-	-	No display (No sensor connected)
	-	-	-	"Init" or "Error"
CALIBRATE	-	-	-	"Cal"
ERROR	-	-	""	-
MAINTENANCE	Measured value flashing or "Clean"	"OFL" flashing	"" flashing	-

Measured value status

-	The combination of sensor status and measured value status is not possible
""	Displayed text

5.4.2 Measured value transmitted on fieldbus level

		Measured value status				
		VALID	OFL	INVALID	MISSING	
status	MEASURE	Measured value				
	UNUSED_ID INACTIVE	0 (zero)				
Sensor	CALIBRATE ERROR MAINTENANCE	For the measured trol system, the together wit	ne measured value 0 (zero) to be evaluated by a superordinate con- system, the measured value always has to be taken into account together with the sensor status and measured value status.			

5.5 Sensor model

The sensor model is the model name the sensor registers with on the IQ SENSORNET.

Code	Model
0101h	SensoLyt700IQ
0201h	TetraCon700IQ
0301h	TriOxmatic700IQ
0302h	TriOxmatic701IQ
0303h	TriOxmatic702IQ
0304h	SC FDO 700 (FDO700IQ)
0305h	SC FDO 701 (FDO700IQ)
0401h	VisoTurb700IQ
0402h	ViSolid700IQ
0501h	AmmoLyt700IQ
0503h	AmmoLyt+ (AmmoLyt+700IQ)
0907h	AmmoLyt+K (AmmoLyt+700IQ)
0601h	NitraLyt700IQ
0602h	NitraLyt+ (NitraLyt+700IQ)
0701h	NitraVis700/1IQ
0702h	NitraVis700/5IQ
0703h	CarboVis700/5IQ
0704h	SolidVis700IQ (UV/VIS sensors with TSS option)
0705h	NitraVis700/5IQ (NiCaVis700IQ)
0706h	CarboVis700/5IQ (NiCaVis700IQ)
0707h	CarboVis700/1IQ
0801h	MIQ/IC2, current input 1
0802h	MIQ/IC2, current input 2
0901h	VARION A (VARION700IQ)
0902h	VARION N (VARION700IQ)
0905h	VARION A (VARION+700IQ)
0906h	VARION N (VARION+700IQ)

Code	Model
0907h	VARION K (VARION+700IQ)
0A01h	NitraVis701 IQ (+ NiCaVis701IQ NI)
0A02h	NitraVis705 IQ (+ NiCaVis705IQ + NiCaVis705IQ NI)
0A03h	CarboVis701 IQ (+ NiCaVis701IQ NI)
0A04h	CarboVis705 IQ (+ NiCaVis705IQ + NiCaVis705IQ NI)
0A05h	UV701 IQ SAC
0A06h	UV705 IQ SAC
0A07h	SolidVis701 IQ (UV/VIS sensors with TSS option)
0A08h	SolidVis705 IQ (UV/VIS sensors with TSS option)
0A09h	UV701 IQ NOx
0A0A	UV705 IQ NOx
0A1Ah	Virtual N sensor - NitraVis701IQ NI
0A1Bh	Virtual N sensor - NitraVis705IQ NI
0A1Ch	Virtual C sensor 1 - CarboVis701 IQ
0A1Dh	Virtual C sensor 2 - CarboVis701 IQ
0A1Eh	Virtual C sensor 3 - CarboVis701 IQ
0A1Fh	Virtual C sensor 4 - CarboVis701 IQ
0A20h	Virtual C sensor 1 - CarboVis705 IQ
0A21h	Virtual C sensor 2 - CarboVis705 IQ
0A22h	Virtual C sensor 3 - CarboVis705 IQ
0A23h	Virtual C sensor 4 - CarboVis705 IQ
0B01h	P 700 IQ
0C01h	IFL 700 IQ
0C02h	IFL 701 IQ

Model	Bit 0	Bit 1	Bit 2	Bit 3-31
SensoLyt700IQ	Component hardware	SensCheck: pH electrode defective, glass broken	-	-
TetraCon700IQ	defective	-	-	-
TriOxmatic700IQ		SensReg: Electrolyte supply is depleted	SensLeck: Mem-	-
TriOxmatic701IQ			brane nead damaged *	-
TriOxmatic702IQ			-	-
SC FDO 700		Measurement interfered	-	-
SC FDO 701		Measurement interfered	-	-
VisoTurb700IQ		SensCheck: Sensor con-	SensCheck: Ultra-	-
ViSolid700IQ		taminated	tem has failed	-
AmmoLyt700IQ		-	-	-
AmmoLyt+		-	-	-
AmmoLyt+K		-	-	-
NitraLyt700IQ		-	-	-
NitraLyt+		-	-	-
NitraVis700/xIQ		-	-	-
CarboVis700/xIQ		-	-	-
SolidVis700IQ		-	-	-
NitraVis70xIQ		Component hardware	Optical measuring range exceeded	-
CarboVis70xIQ		defective xxx		-
SolidVis70xIQ				-
UV70x IQ SAC				
UV70x IQ NOx				
MIQ/IC2		-	-	-

* The SensLeck function is not available with the sea water model (-SW variant)

Model	Bit 0	Bit 1	Bit 2	Bit 3-31
VARION A	Component	-	-	-
VARION N	hardware defective	-	-	-
VARION K	-	-	-	-
IFL 700 IQ	-	-	-	-
IFL 701 IQ	-	-	-	-
P 700 IQ	-	Container for xxx nearly empty!	Air bubbles in the analyzer	-

continued

Note

The status info must be evaluated for each bit individually.

	Code								
Model	00h	01h	02h	03h	04h	05h	06h	07h	08h
SensoLyt700IQ	рН	mV							
TetraCon700IQ	mS/cm	SAL	TDS	S/m					
TriOxmatic700IQ TriOxmatic701IQ TriOxmatic702IQ	mg/l O2	% O2							
SC FDO 700 SC FDO 701	mg/l O2	% O2							
VisoTurb700IQ	FNU- <i>Turb</i>	NTU- Turb	TEF- Turb	mg/l SiO2	ppm SiO2	g/I TSS			
ViSolid700IQ	g/I TSS (M11)	% TSS (M11)	g/I TSS (M21)	% TSS (M21)	g/l SiO2 (M1 ¹)	% SiO2 (M1 ¹)	g/l SiO2 (M2 ¹)	% SiO2 (M2 ¹)	
AmmoLyt700IQ AmmoLyt+	mg/l NH4-N	mg/l NH4	mV						
AmmoLyt+K	mg/l K	mV							
NitraLyt700IQ NitraLyt+	mg/l NO3-N	mg/l NO3	mV						

5.7 Measuring mode

¹ M1 = matrix type 1, M2 = matrix type 2 matrix types: see ViSolid 700 IQ sensor operating manual

	Code								
Model	00h	01h	02h	03h	04h	05h	06h	07h	08h
NitraVis700/xIQ NitraVis70xIQ	mg/l NO3-N	mg/l NO3	mg/l NO3-N ⁴						
NitraVis70xIQ NI	mg/l NO2-N	mg/l NO2							
CarboVis700/xIQ CarboVis70xIQ	mg/l CODto	mg/l CODd s	mg/l TOC	mg/l BOD	mg/l DOC	Abs/m SACto	Abs/m SACds	mg/l CSB4	UVT 254 ⁵
SolidVis700IQ SolidVis70xIQ	(m)g/l TSS ²								
UV70x IQ SAC	1/m SAKgl	1/m SAKgs	% UVT 254	mg/l CSBgl Korrel	mg/l CSBgs Korrel	mg/l TOC Korrel	mg/l BSB Korrel	mg/l DOC Korrel	
UV70x IQ NOx	mg/l NO3-N	mg/l NO3							
MIQ/IC2	3								
VARION A	mg/l NH4-N	mg/l NH4	mV						
VARION N	mg/l NO3-N	mg/l NO3	mV						
VARION K	mg/l K	mV							
P 700 IQ	mg/l PO4-P	mg/l PO4							
IFL 70x IQ	m								

¹ M1 = matrix type 1, M2 = matrix type 2 matrix types: see ViSolid 700 IQ sensor operating manual

- ² The measurement unit depends on the settings of the main sensor
- ³ The measured parameter and measurement unit depend on the settings of the display values (see MIQ/IC2 sensor operating manual).
- ⁴ Only xxxVis700/xIQ: Test measurement with standards
- ⁵ Only CarboVis70xIQ

6 What to do if ...

Here you will find causes and actions to take of errors concerning the PROFIBUS and Modbus communication only. General errors of the IQ SENSORNET system are dealt with in the IQ SENSORNET system operating manual.

6.1 **PROFIBUS**

Data transmission between the bus master and IQ SENSORNET is faulty

Cause	Remedy
 Incorrect wiring 	 Check/change the connections (see section 2.1)
	 Use checklist according to sec- tion 3.3
 Incorrect setting of the address 	 Check/change the setting of the address (see section 3.2.1)
 Incorrect protocol 	 Check the version of the GSD file
	 Adapt the protocol
- IQ SENSORNET defective	 Return the IQ SENSORNET to YSI

The PLC does not
contain any plausible
input data

Cause	Remedy			
 Input data and output data are not consistent 	 When programming the PLC, define input data and output data as consistent over the entire data length 			
 The data interpretation of the PLC is not correct 	 Observe the data alignment of the PLC data representation. If necessary, exchange the high-order and low-order bytes word by word 			

6.2 Modbus RTU

Cause	Remedy
 Incorrect wiring 	 Check/change the connections (see section 2.1)
	 Use checklist according to sec- tion 3.3
 Incorrect setting of address, baud rate, parity 	 Check/change the settings (see section 3.2.1)
 Incorrect protocol 	 Adapt the protocol
 Controller of the IQ SENSORNET defective 	 Return the controller to YSI
Cause	Remedy
	Cause - Incorrect wiring - Incorrect setting of address, baud rate, parity - Incorrect protocol - Controller of the IQ SENSORNET defective Cause

The PLC does not
contain any plausible
input data

Cause	Remedy		
 The data interpretation is not correct 	 Heed the data formats of the IQ SENSORNET (see also sec- tion 4.4.3). 		
 The data interpretation of the PLC is not correct 	 Observe the data alignment of the PLC data representation. If necessary, exchange the high-order and low-order bytes word by word 		

6.3 Ethernet fieldbuses

No network connection	Cause	Remedy		
	 Ethernet hardware defective, e.g. Ethernet cable defective 	 Open the MIQ/MC2 or MIQ/MC3 and check the red Ethernet LED. 		
	 Ethernet connection to MIQ/MC2, MIQ/MC3 or DIQ/S 28X-E[F] 	 The red Ethernet LED is not illuminated (hardware defective): 		
	 Switch or router to which the IQS is connected is defective 	Ethernet cable, Ethernet connector on the router, router		
		 The red Ethernet LED is illuminated (hardware OK): Check for other errors (see below) 		
	 Wrong setting in the IQ SENSORNET (sys- tem/TCP/IP settings menu) 	 Correct the settings (e.g. DHCP yes, but no network addresses displayed) 		
	 Wrong setting in the router/switch 	 Correct the settings 		
	 Blocking by firewall 	 Contact your network adminis- trator or a network specialist 		
The PLC does not	Cause	Remedy		
input data	 Input data and output data are not consistent 	 When programming the PLC, define input data and output data as consistent over the entire data length 		
	 The data interpretation of the PLC is not correct 	 Heed the data formats of the IQ SENSORNET (see also sec- tion 4.4.3). 		
		 Observe the data alignment of the PLC data representation. If necessary, exchange the high-order and low-order bytes word by word 		

7 Contact Information

7.1 Ordering & Technical Support

<u>Telephone</u> :	(800) 897-4151 (937) 767-7241 Monday through Friday, 8:00 AM to 5:00 PM ET
<u>Fax</u> :	(937) 767-1058
<u>Email</u> :	info@ysi.com
<u>Mail</u> :	YSI Incorporated 1725 Brannum Lane Yellow Springs, OH 45387 USA
Internet:	www.ysi.com

When placing an order please have the following information available:

YSI account number (if available)	Name and Phone Number
Model number or brief description	Billing and shipping address
Quantity	Purchase Order or Credit Card

7.2 Service Information

YSI has authorized service centers throughout the United States and Internationally. For the nearest service center information, please visit <u>www.ysi.com</u> and click 'Support' or contact YSI Technical Support directly at 800-897-4151.

When returning a product for service, include the Product Return form with cleaning certification. The form must be completely filled out for an YSI Service Center to accept the instrument for service. The Product Return form may be downloaded at <u>www.ysi.com</u> and clicking on the 'Support' tab.

Xylem |'zīləm|

The tissue in plants that brings water upward from the roots;
 a leading global water technology company.

We're 12,500 people unified in a common purpose: creating innovative solutions to meet our world's water needs. Developing new technologies that will improve the way water is used, conserved, and re-used in the future is central to our work. We move, treat, analyze, and return water to the environment, and we help people use water efficiently, in their homes, buildings, factories and farms. In more than 150 countries, we have strong, long-standing relationships with customers who know us for our powerful combination of leading product brands and applications expertise, backed by a legacy of innovation.

For more information on how Xylem can help you, go to www.xyleminc.com

a **xylem** brand

YSI 1725 Brannum Lane Yellow Springs, OH 45387 Tel: +1 937-767-7241; 800-765-4974 Fax: +1 937-767-1058 Email: info@ysi.com Web: www.ysi.com

©Xylem Inc